Field mapping: Computer calculation and analytical approximation
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A procedure for the calculation of the magnetic field generated by various coils is explained and
compared to a 1902 approximation by Lyle. This approximation consists of substituting two
single loops for a coil with a finite rectangular section. Both methods (exact and approximate) are
applied in the case of two magnets used in the design of a nuclear magnetic relaxometer; the
agreement between them is quite satisfactory, so that Lyle’s approximation can be used even off-

axis, outside the region for which it was established.

I. INTRODUCTION

Magnetic field mapping has been known for a long time
as a very important problem in many physics experiments,
such as elementary particles, plasma confining, spectrosco-
py, etc.' It is also important in some common advanced
undergraduate experiments, for example, when measuring
the em ratio.?

We have been led to this problem through nuclear mag-
netic resonance, more precisely, through relaxometry—
i.e., measuring nuclear magnetic relaxation times in a wide
range of static magnetic fields. Field mapping has been im-
portant in NMR since its inception. It was first noticed in
the 1950s* that the inhomogeneity of the static field into
which the sample recovers its magnetic equilibrium consid-
erably shortens transverse relaxation (i.e., the vanishing of
the magnetization component orthogonal to the static
field): Spins precessing at different frequencies rapidly lose
the phase coherence they had just after the initial pulse.
This problem was solved when Carr and Purcell proposed a
pulse sequence to minimize this phenomenon*; it consists
of sending 180° pulses at regular time intervals, so that a
spin echo appears at the center of the delay separating two
consecutive 180° pulses. The refocusing of the signal elimi-
nates the reversible decay due to the field inhomogeneity.

More recently, the development of MRI (magnetic reso-
nance imaging) was made possible by important improve-
ments in coil design, but the users were confronted with
new problems. The NMR signal giving the image depends
on many parameters: instrumental parameters, local nu-
clear concentration, and the relaxation times 7, and T,
i.e., the times for the magnetization component, respective-
ly, parallel and orthogonal to the field to recover its equilib-
rium value. This multiparametric dependence complicates
the interpretation of the images. In particular, T\, the lon-
gitudinal relaxation time of water protons, characterizes
the studied tissue or heterogeneous system and depends on
the value of the magnetic field into which the spin relaxes.’
The knowledge of this dependence, called dispersion, is
thus an important factor in good understanding of the im-
ages.

We have built an apparatus able to measure longitudinal
relaxation times of water protons in a static field ranging
from 0.01 to 100 G.-This device, called a relaxometer, is a
field cycling system, first built and described by Koenig
and Brown®; it is characterized by a very fast commutation
of the fields, so that the signal detection always occurs at

‘the same frequency. Our system, following the idea of Bor-
card,’ detects the free induction decay of the magnetization
in the Earth’s field. Problems of inhomogeneity when de-
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tecting are thus obviously eliminated thanks to the natural
homogeneity of the Earth’s field, but they remain during
the relaxation: To obtain a field of 10~ G the Earth’s field
must be carefully compensated for. On the other hand, the
nature of our measurements imposes a careful definition of
the static field: We study the longitudinal relaxation time’s
dependence against the field into which the sample relaxes.
The accuracy of the field knowledge (and its homogeneity)
directly gives the value of the errors on the abscissa of our
dispersion curves. OQur system is made of three coils whose
axes form a trirectangle trihedral (see Fig. 1, reproduced
from Ref. 7). Figure 2 shows the field experienced by the
sample during the three stages of one cycle. The sample is
first polarized along the x axis (B = B}). It is generally
admitted that its magnetization is in equilibrium with the
field when the sample has been submitted to the field for a
time greater than or equal to five times the relaxation time.
This first stage is thus relatively long, of the order of or
greater than 1s.

The current going through the coil is then abruptly
modified, so that the sample is now immersed in the relaxa-
tion field (B, )—the field for which we want to know T,.
During these two stages, the Earth’s field B; must be com-
pensated for and the coil assigned to this compensation,
with its axis aligned on the z axis, must be energized. After
a time 7, which varies from one cycle to another, all cur-
rents are canceled. The sample is then subjected only to B,
the Earth’s field (defining the z direction and perpendicu-
lar to its magnetization), and the magnetization M starts

compensation

antenna

polarization
relaxation

Fig. 1. Experimental setup and spatial configuration of the magnetic
fields.
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Fig. 2. The magnetic field experienced by the sample during the three
stages of one cycle, giving the longitudinal magnetization at time ¢ = 7: It
is the initial value of the free-induction signal detected by the antenna. (a)
From ¢t =0 to ¢t = 5T, where T is the longitudinal nuclear magnetic
relaxation time. B, is compensated for; (b) From ¢t =57, tot =57, + 7.
B, is compensated for; (c) Detection: The magnetization precesses
around B, in the x-p plane, inducing a signal in the antenna aligned on
the y axis.

precessing, inducing a current in the third coil, the an-
tenna, with an axis parallel to the y axis. The initial value of
this signal is proportional to M(7) in By. The decay of the
magnetization is reconstituted by varying 7. '

The field for the Earth’s field compensation is generated
by a pair of Helmholtz coils. B, and B, are generated by a
pair of coils separated by a distance slightly larger than
their radius (d = 1.2R). The antenna is a solenoid. Field
mapping is important particularly for Bj.

Writing an analytical expression for the field is straight-
forward when assimilating the coils to simple wires. We
recall these expressions in Sec. II. The problem of estimat-
ing the effect of the finite sizes of the coils is not new. We
found a 1902 work by Lyle® defining an approximation for
answering the question. We present a revised version of his
work, using the field as an unknown function instead of the
scalar potential, as was done by Lyle.
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Finally, we compare in Sec. III the results of Lyle’s ap-
proximation with an exact numerical calculation.

II. ANALYTICAL APPROXIMATION FOR THE
FIELD CALCULATION

The first step of our analysis consists of recalling the
expression for the magnetic field due to a current I going
through a single loop of radius a.

The use of cylindrical coordinates is adapted to the sym-
metry of the problem. Let z be the direction of the axis of
the circular loop, and (p,0) be the polar coordinates in the
plane of the loop. We get from the Biot-Savart law® for the
field at point P(z,p,6),

Bz :Mk(ap)*l/z
4

2
X(K(k) _ 1=k l/z(i/f +1) E(k)),

B, ='uilkz(ap3)*”2
4

x[(—ll“ "1;/22) E(k) —K(k)], (1)

B, =0,

where u,, is the magnetic permeability of the vacuum,
where

k*=4ap/[(a+p)’ +2]<],

and where K(k) and E(k) are, respectively, the complete
elliptic integrals of the first and second kind.

We thus have
B, = B/) =0,
B, = (uyd /2)[d*/(a® + )], (2)

when p = 0, i.e., on the axis.

The value of the field on-axis is the basis of Lyle’s ap-
proximation.

Let us consider the case where the field is generated by a
coil of ¥ loops, with a length 7 along z, and a depth £ along
p. Our coil is thus characterized by two parameters, & and
7. Lyle’s idea consists of defining an equivalent system
made with only two loops, each of them run by a current
NI /2. The aim of the calculation is to locate these loops in
such a way that the field on-axis would be identical to the
second order-in £ and 7 to the field due to the coil. Lyle
identified the magnetic scalar potential for both systems;
we prefer to present the same idea using the field.

Let 4, be the radius of loop i and Z, be the projection on z
of the distance between P and the plane of loop i. If a is the
mean radius of the coil, and z is the coordinate of P against
the medium plane of the coil, we have

A;i=a+u, and Z,=z+4v,

with u;, v, €a, £ /2, and 1/2 being, respectively, the maxi-
ma of |u;| and |v;|.

The field due to loop i may be expanded in a Taylor series
at point P(Z,,0,0):

B .=B“"+B“’u. +B(2)U_ _‘_%B(B)u%
+B%up, + 1B + -+ .

Here, B, ; can easily be averaged on u, and v;, replacing the
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discrete averaging by a continuous one,
1 £/2

(B.) =——

n/2
duf dv B,(u,p). (3)
g'ﬂ —&/2 — /2

J

We obtain, to the second order in &,7,
<Bz> ____B(()i +B(3)(§2/24) +B(i'(7]2/24), (4)

i.e., starting from expression (2)

(B.) =#_(2)1E [“ +z'2)‘”2+£(n——§_)z'2(1 422"
a

2

24

+_1_(2§-_—’377_+2‘_§_T-z'2)(1+212)—5/2:|’ (5)
24 a’ a
where z' = z/a.
Equation (5) can be expanded in powers of ',
T & (2n+1)(2n+2)§2—(2n+1)(2n+3)772) (2n+1)!!( 22)”
B _ HoNT (1 2. (6)
(8.) 2a ,,Z’o + 2447 2n)! a’

Let us now define the equivalent system if %7 > £: two identical coaxial loops, of radius #, the distance between them being

2B. We get from (2)

2 =uoN1( r? r? )

+ 313/2
4 \[r’+c=-p1V" [rP+c+p°1"

or, to the second order in 3 and expanding the result in a Taylor series, the variable being z/7,

B _ NI & (2n4 DY (1_ Qn+1)(2n+3) B*
: 2 r-

2r n=0 (2’1)!!

We now just have to identify (6) and (7), setting
r=a(l 4 &). The solution

B>=n—-&3H/12 (8)
and
6 =£%/24a° 9

is such that, to first order in 8, expansions (6) and (7) are
identical for all n.

It can easily be shown that solutions (8) and (9) are
unchanged when z is larger than a and . Furthermore,
identification is also possible for n < £. ,

An analogous calculation shows that for 7 < ¢ the sys-
tem equivalent to the coil is made of two concentric and
coplanar loops each run by a current NI /2, with radii
r+ 8, where r = a(1 + 5°/24a”) and §° = (£ — %) /12.

The idea of Lyle is simple and clear: A cylindrical coil
made of coaxial and parallel loops can be characterized by
its radial depth (£) and its axial length (7). On-axis the
field generated by this coil is equivalent to the field genera-
ted by two loops (either parallel and with equal radii, or
concentric and coplanar), to second order against param-
eters £ /a and 7/a, a being the mean radius of the loops.

In Sec. IIT we will consider the results obtained with the
same approximation, but off-axis, i.e., outside the domain
for which it was originally established.

III. DETERMINATION OF THE FIELD OFF-AXIS

The field produced by a coil can be calculated at any
point starting from Egs. (1). It must be summed over the
contributions of each loop, which amounts to varying @ and
z (and thus k) for a cylindrical magnet.

On the other hand, the same equations (1) allow us to
obtain the field generated by the two equivalent loops of
Lyle. We have compared the results obtained with both
methods (exact and approximate) for the two different
magnets involved in our device.
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The first magnet is the magnet generating the polariza-
tion and relaxation fields, made of two identical coils of
1216 loops each. The parameters of the system are
a=10.68 cm, 7 =4.00 cm, £ = 3.36 cm. The distance
between the central planes of the two coils is 13.00 cm.
Lyle’s equivalent system consists of four parallel loops,
with a radius

r=a(l+8), 6=00041,
the distance between the two loops of each pair is
28 =125cm.

The second magnet is the one that compensates the
Earth’s field, made of two Helmholtz coils, characterized
by the following parameters:

a=220825cm, 5=200cm, £=D0.165cm,

Table L. Spatial variation of the zcomponent of the magnetic field (in G/
A) obtained by the complete numerical calculation for the first magnet
described in the text. Here, z is the coordinate along the axis of the coil,
and p is the distance to this axis. The broken line shows the region where
the field variation is of the order of 1%.

p (cm)
10 43.16 4408  47.18  53.74 66.38
9 55.63 5725  62.67  74.09 98.18
8 6631  68.17 7420 8576  104.89
7 7457 7629  81.56  90.60  102.78
6 80.47  81.84 8589  92.27 99.90
5 84.42 8544 8834 9265 97.39
4 86.95  87.67  89.68  92.53 95.44
30 BERTTTERYSTT038 Y 9226 9401
2 89.38 8974 90.72 ) 91.99 93.04
1 89.83  90.12  90.87 1 91.81 92.48
0 89.97 9023 9091 } 91.74 92.30
0 1 2 3 4 z (cm)
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Table I1. Difference in percentage between the result in Table I and the z
component of the field obtained by substituting one single loop for one
coil.

Table I11. Difference in percentage between the result in Table I and the z
component of the field obtained by substituting Lyle’s two loops for one
coil.

p (cm)
10 —127 —135 —157 —1.62 1.38
9 —1.72 —184 —-222 —-300 —5.55
8 —1.85 —195 —-230 -299 —401
7 -177 —182 —197 —-210 -—182
6 —~1.58 —158 —15 —141 —0.93
5 —137 —-135 —-125 —101 —0.59
4 —-119 —115 —102 —-079 —045
3 —105 —-100 —-088 —067 —0.39
2 —095 —-091 —-079 —060 —0.37
1 —08 —-08 —-074 —057 -036
0 —087 —-08 -072 —-056 —0.35
0 1 2 3 4 z(cm)

p (cm)

10 0.73 0.83 1.28 2.94 10.97
9 0.17 0.20 0.30 042 —1.13
8 —-027 -032 —-052 —115 —272
7 —058 —-064 —08 —128 —1.71
6 —-074 -079 —-093 ~112 —1.21
5 —-082 —-084 —-091 —-098 —0096
4 -08 —-085 -—087 —088 —0.384
3 —084 —-084 —084 082 —-077
2 —08 —-08 —-082 —-078 —-072
1 —082 —-082 -—-08 —-076 —0.70
0 —08 —-08 -08 ~076 —0.70

0 1 2 3 4 z(cm)

and the distance between the central planes of the coils is
22.00 cm. Each coil has 108 loops. We obtain here
8 =12.3X107° and a distance between the two loops of
each pair of

2 =1.15 cm.

Tables I-III refer to the first magnet described above.
Table I shows the spatial variation of the z component of
the field obtained by complete numerical computation.

Tables II and ITI show the spatial variation of the differ-
ence in percentage between the result presented in Table I,
on the one hand, and two approximations, on the other
hand, that we called, respectively, the simplest approxima-
tion, i.e., one loop for one coil (Table II), and Lyle’s ap-
proximation (Table III), which is always for the z compo-
nent of the field.

The reason for presenting the results of Table II (substi-
tuting one loop for each coil) is that using Lyle’s calcula-
tion is only interesting if it gives better results than the
simplest approximation we could use!

We did not consider the radial component of the field
because it is very small and because the signal detected in
the antenna (see Fig. 1) essentially does not depend on it.

Table I shows that the region where the field homogene-
ity is good (less than 1% of variation) is a cylinder about 5
cm in height (for z between — 2.5cm and + 2.5 cm) and
about 3 cm in radius, i.e., a.volume smaller than the inter-
nal volume of the magriet. Tables II and III show that the
concentration of the current on one or two loops decreases
the field, except at the very edge of the internal volume of
the magnet—a result not unexpected. Indeed, concentra-
tion of the current on one loop amounts to bringing some
current elements nearer the point where the field is to be
determined, which increases the field, and, simultaneously,
to bringing some other elements further off from this point,
which decreases the field. But the dependence of the field
against the distance is such that the decrease is larger than
the increase, resulting in a global diminution of the field
that can thus be qualitatively understood. It can also be
remarked, comparing Tables II and 111, that the difference
between the numerical and the approximate result in-
creases much faster when going away from the axis for one
loop than for Lyle’s two loops: It remains almost every-
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where less than 1% for Lyle’s approximation, while it
reaches 3% for the simplest approximation. This may be
summarized by one observation: A volume average of the z
component of the field gives 69.91 G/A for the simplest
approximation, 71.37 G/A for Lyle’s approximation, and
71.17 G/A for the numerical computation, i.e., 1.8%
between the simplest approximation and the numerical re-
sult, and only 0.3% between Lyle’s result and the numeri-
cal one.

Wedid not reproduce the complete results for the second
magnet (the Helmholtz coils) because such magnets have
been extensively studied. The conclusion for the validity of
the approximations is quite coherent with our above re-
marks. In particular, the volumétric mean field for the in-
ternal volume of the magnet gives a difference of 2%
between the simplest approximation and the numerical re-
sult, and only 0.5% when using Lyle’s approximation.

The general conclusion is obvious: Lyle’s approximation
is useful for estimating the field due to a coil with a rectan-
gular section, and it is even more useful off-axis than in the
fegion near the axis for which it was originally established.
With the extensive use of computers, it is now feasible to
perform exact numerical field determinations. As a result
of this, it is also possible to test the accuracy of analytical
approximations that were used at a time when there was no
computer available, and to find out the remarkable quality
of these approximations.
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